

17TH EAST ASIAN ACTUARIAL CONFERENCE

15 - 18 October 2013 Resorts World Sentosa, Singapore

Numerical impact study of bonus distribution on default

CONTENTS

- Introduction
- Objective
- Scope
- Model
- Numerical Results
- Conclusion
- Future Task

Introduction

- With-Profit Products
- Policyholder sharing the profits
- Two types of Bonuses:
 - Reversionary Bonus
 - Terminal Bonus

Introduction

- Traditional Bonus Distribution Strategy
 - Asset Share Study
 - Comparison of Policy Value against Life Par Fund
 - Asset of Life Par Fund is sufficient
 - Following the company's specific bonus principles

Introduction

- Pros and Cons
 - Common method based on past actual experience
 - Future projection based on deterministic assumptions, no stochastic simulation
 - Insufficient information to management
 - No management decision

Objectives

- Modeling bonus declaration
- Consideration of Singapore Regulation
- Quantifying impact of management decision on the default probability
- Incorporation of future long term investment rate and bonus rate

Scope

- Single Premium with profit Endowment for 20 years policy term with guaranteed yield
- · No expense charges, lapses and mortality
- Bonus comes from the surplus

- Steffensen (2004)
 - Participating life insurance
 - · Positive dividends
 - Linear dividends are optimal adopting a power utility optimization criterion

· Balance Sheet at time T

ASSET	Liability	-	
Asset(T)	Policy Value (T)		
	Allocated Bonus (T)		
	Free Capital (T)		
		Singapore Actuarial Society	EAAC

- Asset
 - Market value of insurer's asset
 - Ignorance of asset mix
 - Geometric Brownian motion

- Liability
 - Policy Value
 - Allocated bonus
 - Free capital

Base Model

• Bonus Rate and Policy Value – Model 1
$$r_b = Max(r_g, \alpha(\frac{B(T-1)}{P(T-1)} - \gamma)$$

$$P(T) = P_0 \prod_{i=1}^{i=T} (1 + Max(r_g, \alpha(\frac{B(i-1)}{P(i-1)} - \gamma)))$$

- α is distribution factor reflecting management decision
- y is a buffer which is linked to solvency requirement
- r_g is guaranteed return

Minimum Condition Liability (MCL)

$$\mathit{MCL}(T) = \left[\left(1 + r_{\mathrm{g}} + r_{1} \right) \cdots \left(1 + r_{\mathrm{g}} + r_{\mathrm{T-1}} \right) \right] \times E_{T}^{r} \left(1 + r_{\mathrm{g}} \right)^{n-T}$$

- Past declared guaranteed bonus only
- · Discounted using risk free rate

Model 2

Policy Liability (PL)

$$PL(T) = \left[\left(1 + \mathbf{r_g} + \mathbf{r_1} \right) \cdots \left(1 + \mathbf{r_g} + \mathbf{r_{T-1}} \right) \right] \times E_T^i \left(1 + \mathbf{r_g} + \mathbf{r_{T-1}} \right)^{n-T}$$

- Past declared guaranteed and future anticipated bonus
- Discounted using best estimated long term investment returns

Bonus Rate and Policy Value – Model 2

$$\begin{split} r_b &= Max(r_g, \alpha\left(\frac{(A(T-1) - \max\left(MCL(T-1), PL(T-1)\right))}{\max\left(MCL(T-1), PL(T-1)\right)} - \gamma\right)) \\ P(T) &= P_0 \prod_{i=1}^{i=T} (1 + Max(r_g, \alpha(\frac{(A(i-1) - \max\left(MCL(i-1), PL(i-1)\right)}{\max\left(MCL(i-1), PL(i-1)\right)} - \gamma))) \end{split}$$

- PL calculation
 - · Latest declared bonus rate
 - No future investment
 - Disregard future surplus
- "Future Anticipated Bonuses" in policy liability?

Future long term interest model

$$dr(t) = k(l - r(t))dt + \sigma \sqrt{r(t)}dW(t)$$

$$r_b^f = \max(a(r - r_{lv}), 0)$$

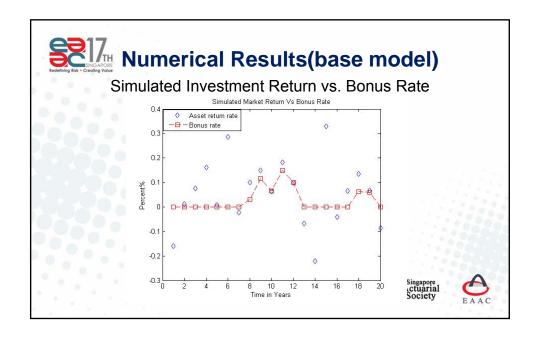
- Include future anticipated bonuses r_b^f in policy liability
- Only credited when Simulated long term investment return > best estimated long term investment return

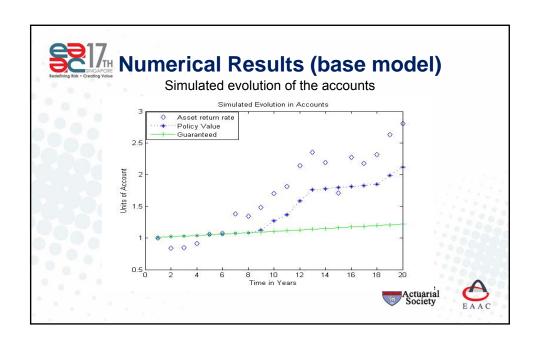
Traditional Bonus Strategy

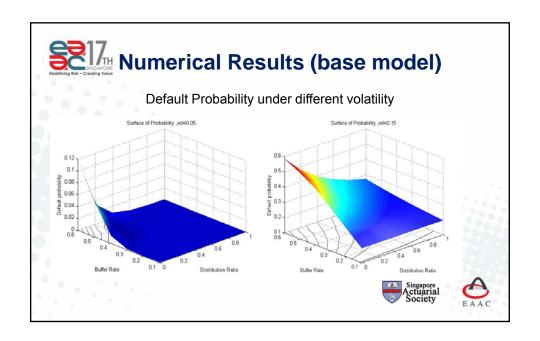
- With lapse and mortality
- 20,000 simulated asset paths (σ=0.15, long term investment=5%)
- Default probability = 57%
- Although long term investment return remain at the best estimated level, the fluctuation will lead company more probability to have insufficient asset to pay out the benefit

Numerical Results

- Assumptions
 - initial asset value =1
 - long term investment = 0.05
 - initial liability = 1, initial surplus = 0
 - guaranteed return rate for policy holder 0.01
 - No friction cost

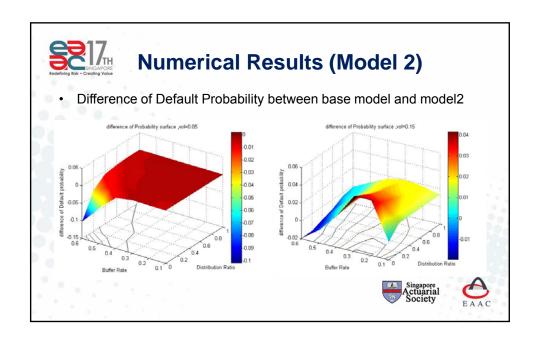






Numerical Results (base model)

- · Default probability
 - Asset volatility
 - Distribution ratio
 - · Buffer ratio
- Asset volatility is critical
- Iso-default probability contour and flexibility of bonus crediting



Numerical Results (Model 2)

- Discounting rate in model 2 is risk free rate set by regulator
- Same result pattern as base model given volatility, distribution ratio and buffer ratio
- Significant relative difference of default probability between two models at low asset volatility
- The relative difference is decreasing when volatility rising

Numerical Results (Model 2)

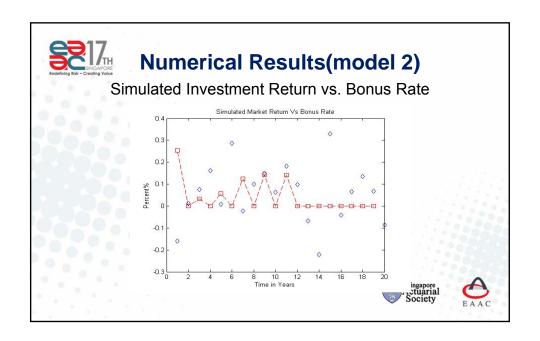
- Asset Volatility $\sigma = 0.15$
- · Discounted by risk free rate for MCL

	Default Probability					
Distribution	Buffer Ratio					
Ratio	0.1	0.2	0.3	0.4	0.5	0.6
0.0	0.19080	0.19080	0.19080	0.19080	0.19080	0.19080
0.2	0.28895	0.25495	0.23425	0.21920	0.20865	0.20315
0.4	0.37925	0.31540	0.27260	0.24605	0.22885	0.21590
0.6	0.46410	0.38030	0.31745	0.27715	0.24925	0.23125
0.8	0.53195	0.43270	0.36005	0.30770	0.27395	0.25035
1.0	0.58070	0.47650	0.39745	0.33880	0.29680	0.26605

Numerical Results (Model 2)

- Asset Volatility $\sigma = 0.15$
- Discounted by constant 5% for MCL

		Default Probability				
Distribution	Buffer Ratio					
Ratio	0.1	0.2	0.3	0.4	0.5	0.6
0.0	0.19175	0.19175	0.19175	0.19175	0.19175	0.19175
0.2	0.51660	0.46475	0.41965	0.38090	0.34920	0.32325
0.4	0.66975	0.60050	0.53935	0.48740	0.44150	0.40155
0.6	0.74975	0.67350	0.60535	0.54890	0.49980	0.45305
0.8	0.79740	0.72495	0.65690	0.59715	0.54225	0.49275
1.0	0.83010	0.75865	0.69760	0.63745	0.58365	0.53135



Numerical Results (Model 2)

- The default probability spikes using constant 5% as a discounting rate for MCL
 - More bonus rates are credited due to the discounting rate
- Review asset liability matching when risk free rate changes

Numerical Results(model 3)

• Short Rate Volatility $\sigma = 0.085$

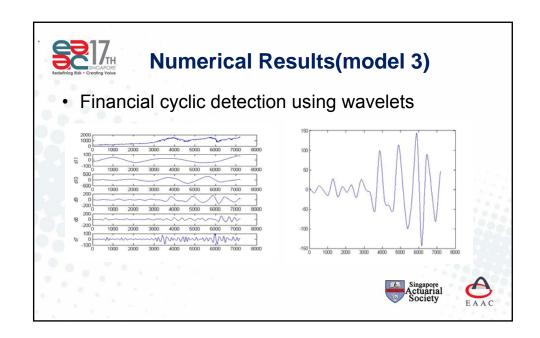
0	Default Probability starting long term investment return rate					
Distribution						
Ratio	0.025	0.03	0.035	0.04	0.045	0.05
0.1	0.6550	0.6585	0.6645	0.6625	0.6640	0.6585
0.2	0.6545	0.6565	0.6640	0.6615	0.6630	0.6570
0.3	0.6520	0.6560	0.6630	0.6595	0.6610	0.6560
0.4	0.6525	0.6550	0.6620	0.6575	0.6605	0.6555
0.5	0.6525	0.6545	0.6610	0.6575	0.6585	0.6545
0.6	0.6520	0.6535	0.6605	0.6570	0.6580	0.6540

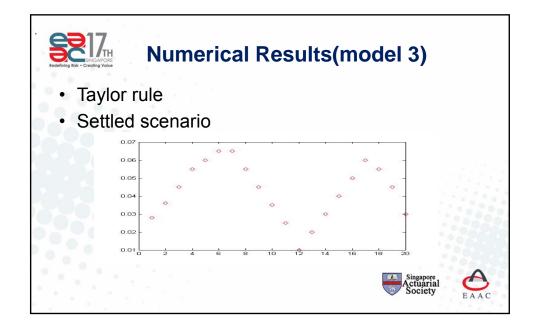
Numerical Results(model 3)

- · Default probability insensitive to parameters
 - a
 - Initial long term investment return rate
- · Further investigation is needed
 - Discounting factor
 - CIR~ $r_{T+i} = r_T + cP$ $c = \frac{(1-e^{-\kappa t})\sigma^2}{2k}$ $P \sim X^2(\frac{4kl}{\sigma^2}, 2kr_Te^{-ki})$

Numerical Results(model 3)

- more complex long term investment return can be tested through scenario setting e.g.
 - Financial cyclic
 - · Taylor rule
- Financial cyclic detection
 - Wavelets or HP filter





Conclusion

- Long term low level of interest, future macroeconomic and financial market volatility threatened the solvency of company
- Proposed framework is helpful for quantifying risk analysis and management decision
- Reduce of asset volatility significantly lower the default risk by proper portfolio allocation

Conclusion

- Partial flexible bonus rate decision by selecting proper control parameters
- Change of risk free rate may substantially increase default probability
- Integration of anticipation of future best estimated investment return

Future Task

- Further adaption of the models with variables of mortality and surrender
- Multiple policies
- Stochastic control to keep solvency target while maximize company or shareholders' profit

